4.6 Special Segments in Triangles

Worksheet

Name: \qquad
Date: \qquad Period: \qquad

For \#1-5, use the figure at the right. In the figure, $\overrightarrow{C D}$ is the perpendicular bisector of $\overline{A B}$.

1. What is the relationship between $A D$ and $A B$?
2. What is the relationship between $m \angle A D C$ and $m \angle B D C$?
3. What is the relationship between AC and CB ?
4. What type of triangle is $\triangle A B C$?
5. TRUE or FALSE: $\overline{A C} \cong \overline{A D}$.

For \#1-5.

For \#6-10, use the figure at the right to find each measure. In the figure, $\overline{U V}$ is a perpendicular bisector of $\overline{S W}$, and $\overline{W V}$ is an angle bisector of $\angle S W T$.
6. $S U=$ \qquad
7. $m \angle V W X=$ \qquad
8. $m \angle W V X=$ \qquad
9. $m \angle X T V=$ \qquad

For \#6-10.
10. $m \angle X V T=$ \qquad

For \#11-14, complete the statement using always, sometimes, or never.
11. A median \qquad has a midpoint as an endpoint.
12. An altitude \qquad lies outside a triangle.
13. A perpendicular bisector \qquad has a vertex as an endpoint.
14. The angle bisectors of a triangle \qquad intersect at a single point.

For \#15-19, use the map of the Bermuda Triangle (at the right) and the given information to decide whether $\overline{O B}$ is a perpendicular bisector, an angle bisector, a median or an altitude of $\triangle M B P$.
15. If $\overline{M O} \cong \overline{O P}$, then $\overline{O B}$ is a(n)
\qquad of $\triangle M B P$.
16. If $\overline{O B} \perp \overline{M P}$, then $\overline{O B}$ is a(n)
\qquad of $\triangle M B P$.
17. If $\angle M B O \cong \angle P B O$, then $\overline{O B}$ is a(n)
\qquad of $\triangle M B P$.
18. If $\overline{O B} \perp \overline{M P}$ and $\overline{M O} \cong \overline{O P}$, then $\overline{O B}$ is a(n)

For \#15-19.
19. If $\overrightarrow{B O}$ bisects $\angle M B P$, then $\overline{O B}$ is a(n)
\qquad of $\triangle M B P$.

For \#20-27, consider the triangle below. In $\triangle A B C$, the midpoints of the sides are L, M, and N .

For \#20-27.
20. $\overline{L M} \|$ \qquad
21. $\overline{A B} \|$ \qquad
22. If $A C=14$, then $L N=$ \qquad .
23. If $M N=8$, then $A B=$ \qquad .
24. If $N C=3$, then $L M=$ \qquad .

25 . If $L N=5$, then \qquad $=10$.
26. If $L M=3 x+1$ and $B C=10 x-6$, then $L M=$ \qquad .
27. If $N M=x-1$ and $A B=3 x-7$, then $A B=$ \qquad .

For \#28-30, decide whether the statement is true or false. Illustrate your answer with a sketch.
28. A perpendicular bisector can also be an altitude.
29. An angle bisector cannot be a median.
30. In a triangle, one segment can be a perpendicular bisector, an angle bisector, a median AND an altitude.
\qquad
\qquad
For \#1-5, use the figure at the right. In the figure, $\overrightarrow{C D}$ is the perpendicular bisector of $\overline{A B}$.

1. What is the relationship between $A D$ and $A B$?

$$
A D=\frac{1}{2} A B
$$

2. What is the relationship between $m \angle A D C$ and $m \angle B D C$?

$$
m \angle A D C=m \angle B D C=90^{\circ}
$$

3. What is the relationship between AC and CB ?

$$
A C=B C
$$

4. What type of triangle is $\triangle A B C$?
isosceles

For \#1-5.
5. TRUE or FALSE: $\overline{A C} \cong \overline{A D}$. FALSE

For \#6-10, use the figure at the right to find each measure. In the figure, $\overline{U V}$ is a perpendicular bisector of $\overline{S W}$, and $\overline{W V}$ is an angle bisector of $\angle S W T$.
6. $S U=4$
7. $m \angle V W X=40^{\circ}$
8. $m \angle W V X=50^{\circ}$
9. $m \angle X T V=60^{\circ}$

For \#6-10.
10. $m \angle X V T=30^{\circ}$

For \#11-14, complete the statement using always, sometimes, or never.
11. A median $A L W A Y S$ has a midpoint as an endpoint.
12. An altitude SOMETIMES lies outside a triangle.
13. A perpendicular bisector SOMETIMES has a vertex as an endpoint.
14. The angle bisectors of a triangle $A L W A Y S$ intersect at a single point.

For \#15-19, use the map of the Bermuda Triangle (at the right) and the given information to decide whether $\overline{O B}$ is a perpendicular bisector, an angle bisector, a median or an altitude of $\triangle M B P$.
15. If $\overline{M O} \cong \overline{O P}$, then $\overline{O B}$ is a(n) MEDIAN of $\triangle M B P$.
16. If $\overline{O B} \perp \overline{M P}$, then $\overline{O B}$ is a(n) ALTITUDE of $\triangle M B P$.
17. If $\angle M B O \cong \angle P B O$, then $\overline{O B}$ is a(n) ANGLE BISECTOR of $\triangle M B P$.

For \#15-19.
18. If $\overline{O B} \perp \overline{M P}$ and $\overline{M O} \cong \overline{O P}$, then $\overline{O B}$ is a(n) PERPENDICULAR BISECTOR of $\triangle M B P$.
19. If $\overrightarrow{B O}$ bisects $\angle M B P$, then $\overline{O B}$ is a(n) ANGLE BISECTOR of $\triangle M B P$.

For \#20-27, consider the triangle below. In $\triangle A B C$, the midpoints of the sides are L, M, and N .

For \#20-27.
20.
21.
22. If $A C=14$, then $L N=$.
23. If $M N=8$, then $A B=$.
24. If $N C=3$, then $L M=$.
25. If $L N=5$, then $=10$.
26. If $L M=3 x+1$ and $B C=10 x-6$, then $L M=8$.

$$
\begin{gathered}
L M=\frac{1}{2} B C ; 3 x+1=5 x-3 ; 4=2 x ; 2=x \\
L M=32+2=8
\end{gathered}
$$

27. If $N M=x-1$ and $A B=3 x-7$, then $A B=8$.

For \#28-30, decide whether the statement is true or false. Illustrate your answer with a sketch.
28. A perpendicular bisector can also be an altitude. TRUE, in an isosceles triangle
29. An angle bisector cannot be a median. FALSE, it is in an isosceles triangle
30. In a triangle, one segment can be a perpendicular bisector, an angle bisector, a median AND an altitude.

TRUE, in an equilateral triangle

