Name: \qquad
Date: \qquad

Practice Test 2: Powers and Roots

$\mathrm{K}: \ldots$	$\mathrm{C}: \ldots$	$\mathrm{A}: _$	$\mathrm{T}:$

Knowledge:

1. Write as a single power with positive exponent(s).
(a) $6^{9} \times 6^{2} \div 6^{5} \quad[\mathrm{~K}: 2]$
(b) $(-3)^{0} \times(-3) \div(-3)^{-5}$
[K: 2]
(c) $\left((-11)^{3}\right)^{-1} \times\left((-11)^{2}\right)^{5}$
[K: 3]
(d) $\frac{\left(9^{2}\right)^{6} \times 9^{-3}}{(9)^{11}} \quad[\mathrm{~K}: 4]$
2. Simplify then evaluate.
(a) $5^{-2}-25^{-1}-\left(5^{-1}\right)^{2}$
[K: 5]
(b) $-2^{2}+2^{-1}+\left(2^{2} \times 3^{0}\right)$
[K: 5]
3. Complete the following table. [K: 7]

Numeral	Scientific Notation		
	1200	(a)	
(b)	0.0000000548	(c)	
	-1306000	(d)	
(e)	(f)		
	-0.00000785		9.34×10^{-6}
(g)		1.754×10^{11}	

AChor/MPM1D

Name: \qquad Practice
Date: \qquad Test 2
4. Simplify as a scientific notation.
(a) $9.7 \times 10^{12} \times 2.2 \times 10^{6}$
[K: 2]
(b) $\frac{-2.55 \times 10^{-22}}{3.4 \times 10^{-11}} \quad[\mathrm{~K}: 2]$
5. Simplify as a single power with positive exponent(s) then evaluate as a fraction.
(a) $-\left(\frac{1}{5}\right)^{2}$
[K: 3]
(b) $\left(-\frac{2}{3}\right)^{-4}[\mathrm{~K}: 3]$
6. Simplify then evaluate. Give answers to 2 decimal places if necessary.
(a) $\sqrt{\sqrt{49}+\sqrt{81}} \quad[\mathrm{~K}: 4]$
(b) $\sqrt{8 \times \sqrt{64}} \quad[\mathrm{~K}: 3]$

Communication:
Write answers for the following questions in full English sentences. [C: 1]
7. Explain in words the steps you will follow to simplify $2^{4} \times 2^{5}$. [C: 2]
8. The Pythagorean relation: $c^{2}=a^{2}+b^{2}$.

Explain the relation and describe what each variable represents. [C: 4]
\qquad
9. When asked to write 135000000 in scientific notation, Ali answered 135×10^{6}. Why is this answer wrong? What is the right answer? [C: 3]

Provide answer statements for the following sections where applicable. [C: 1] Application:
10. A rectangular tabletop is $10^{4} \mathrm{~cm}$ long and 10 cm wide. What is its area? Write your answer as a single power. [A: 3]
11. The area of a square shaped parking lot is $1296 \mathrm{~m}^{2}$.
(a) How long is each side of the parking lot? [A: 3]
(b) How much fencing would be needed to go around the whole parking lot? [A: 3]
\qquad
12. A student drew a sketch on an $8-\mathrm{cm}$ square piece of paper. If the sketch is mounted on a piece of poster board twice the area of the paper. What is the length of each side of the poster board, to the nearest tenth of a centimetre? [A: 5]
13. Find the length of the unknown sides, to 2 decimal places. [A: 6]

Thinking:

14. The mass of the Earth is about $6.0 \times 10^{24} \mathrm{~kg}$.
(a) The mass of the sun is about 3.3×10^{5} times as great as the mass of Earth. What is the mass of the sun? [T: 4]
(b) The mass of the sun is about 2.75×10^{7} times as great as the mass of the moon. What is the mass of the moon? [T: 4]

Name: \qquad
Date: \qquad Practice Test 2
15. You want to bring a sheet of glass 2.4 m by 2.1 m through a doorway that is 2 m high and 1.6 m wide. Will it fit? Explain. Draw a well-labelled diagram to visualize the situation. [T: 6]
16. Use mathematical reasoning to determine each value of n.
(a) $\left(7^{2}\right)^{n}=1$
[T: 2]
(b) $\left(n^{2}\right)^{-2}=\frac{1}{16}$
[T: 2]
17. "All integers have 2 square roots."

Do you agree with this statement? Explain your reasoning. [T: 4]

1. (a) 6^{6}, (b) $(-3)^{6}$, (c) $(-11)^{7}$, (d) $\frac{1}{9^{2}}$; 2. (a) $-\frac{1}{25}$, (b) $\frac{1}{2}$; 3. (a) 1.2×10^{3}, (b) 0.00000234 ,(c) 5.48×10^{-8},
(d) -1.306×10^{6}, (e) 940000000000 , (f) -7.85×10^{-6}, (g) 1754000000000000 ;
2. (a) 2.134×10^{19}, (b) -7.5×10^{-12}; 5. (a) $-\frac{1}{25},-25$, (b) $\left(-\frac{3}{2}\right)^{4}, \frac{81}{16}$; 6. (a) $\sqrt{16}, 4$, (b) $\sqrt{64}, 8$;
3. It is multiplying powers with the same base, so first write the common base as the base then add the exponents of the two powers. 8. Check Worksheet 2-11; 9. First part of the notation is not a decimal number greater than and equal to 1 and less than 10 . The right answer should be 1.35×10^{8}; 10. $10^{5} \mathrm{~cm}^{2}$; 11. (a) 36 m , (b) 144 m ;
4. 11.3 cm ; 13. $x=8 \mathrm{~cm}, y=12.04 \mathrm{~cm}$; 14. (a) $1.98 \times 10^{30} \mathrm{~kg}$, (b) $7.2 \times 10^{22} \mathrm{~kg}$; 15. Yes, the glass sheet can go through the diagonal of the doorway. The diagonal of the doorway is 2.56 m long and it is greater than the length or the width of the glass sheet; 16. (a) 0 , (b) 2 ; 17. No, only positive integers have 2 square roots (positive and negative: $2 \times 2=4$ and $-2 \times-2=4$ as well). Zero has only 1 square root because $0 \times 0=0$. Negative integers have no square root at all because the square root of a negative integer is undefined.
