Name: _____

Date: _____

Practice Test 2: Powers and Roots

K:	C:	A:	T:
----	----	----	----

Knowledge:

1. Write as a single power with positive exponent(s). (a) $6^9 \times 6^2 \div 6^5$ [K: 2] (b) $(-3)^0 \times (-3) \div (-3)^{-5}$ [K: 2]

(c)
$$((-11)^3)^{-1} \times ((-11)^2)^5$$
 [K:3] (d) $\frac{(9^2)^6 \times 9^{-3}}{(9)^{11}}$ [K:4]

2. Simplify then evaluate.
(a)
$$5^{-2} - 25^{-1} - (5^{-1})^2$$
 [K: 5]
(b) $-2^2 + 2^{-1} + (2^2 \times 3^0)$ [K: 5]

3. Complete the following table. [K: 7]

Numeral	Scientific Notation
1 200	(a)
(b)	2.34×10^{-6}
0.000 000 054 8	(c)
-1306000	(d)
(e)	9.4×10 ¹¹
- 0.000 007 85	(f)
(g)	1.754×10^{15}

AChor/MPM1D

Name:	Practice
Date:	Test 2

4. Simplify as a scientific notation.

(a)
$$9.7 \times 10^{12} \times 2.2 \times 10^{6}$$
 [K: 2] (b) $\frac{-2.55 \times 10^{-22}}{3.4 \times 10^{-11}}$ [K: 2]

5. Simplify as a single power with positive exponent(s) then evaluate as a fraction.

(a)
$$-\left(\frac{1}{5}\right)^2$$
 [K: 3] (b) $\left(-\frac{2}{3}\right)^{-4}$ [K: 3]

6. Simplify then evaluate. Give answers to 2 decimal places if necessary. (a) $\sqrt{\sqrt{49} + \sqrt{81}}$ [K: 4] (b) $\sqrt{8 \times \sqrt{64}}$ [K: 3]

Communication:

Write answers for the following questions in full English sentences. [C: 1]

7. Explain in words the steps you will follow to simplify $2^4 \times 2^5$. [C: 2]

8. The Pythagorean relation: $c^2 = a^2 + b^2$. Explain the relation and describe what each variable represents. [C: 4]

AChor/MPM1D	Name:	Practice
	Date:	Test 2

9. When asked to write 135000000 in scientific notation, Ali answered 135×10^6 . Why is this answer wrong? What is the right answer? [C: 3]

Provide answer statements for the following sections where applicable. [C: 1] Application:

10. A rectangular tabletop is 10⁴ cm long and 10 cm wide. What is its area? Write your answer as a single power. [A: 3]

11. The area of a square shaped parking lot is 1296 m².(a) How long is each side of the parking lot? [A: 3]

(b) How much fencing would be needed to go around the whole parking lot? [A: 3]

AChor/MPM1D	Name:	Prostias
	Date:	Practice Test 2

12. A student drew a sketch on an 8-cm square piece of paper. If the sketch is mounted on a piece of poster board twice the area of the paper. What is the length of each side of the poster board, to the nearest tenth of a centimetre? [A: 5]

13. Find the length of the unknown sides, to 2 decimal places. [A: 6]

Thinking:

- 14. The mass of the Earth is about 6.0×10^{24} kg.
 - (a) The mass of the sun is about 3.3×10^5 times as great as the mass of Earth. What is the mass of the sun? [T: 4]

(b) The mass of the sun is about 2.75×10^7 times as great as the mass of the moon. What is the mass of the moon? [T: 4]

AChor/MPM1D	Name:	Desisting
	Date:	Practice Test 2

15. You want to bring a sheet of glass 2.4 m by 2.1 m through a doorway that is 2 m high and 1.6 m wide. Will it fit? Explain. Draw a well-labelled diagram to visualize the situation. [T: 6]

16. Use mathematical reasoning to determine each value of *n*.

(a)
$$(7^2)^n = 1$$
 [T: 2] (b) $(n^2)^{-2} = \frac{1}{16}$ [T: 2]

17. "All integers have 2 square roots."Do you agree with this statement? Explain your reasoning. [T: 4]

(a) 6⁶, (b) (-3)⁶, (c) (-11)⁷, (d) 1/9²; 2. (a) -1/25, (b) 1/2; 3. (a) 1.2×10³, (b) 0.000 002 34, (c) 5.48×10⁻⁸, (d) -1.306×10⁶, (e) 940 000 000 000, (f) -7.85×10⁻⁶, (g) 1754 000 000 000 000;
 (a) 2.134×10¹⁹, (b) -7.5×10⁻¹²; 5. (a) -1/25, -25, (b) (-3/2)⁴, 81/16; 6. (a) √16, 4, (b) √64, 8;
 It is multiplying powers with the same base, so first write the common base as the base then add the exponents of the two powers. 8. Check Worksheet 2-11; 9. First part of the notation is not a decimal number greater than and equal to 1 and less than 10. The right answer should be 1.35×10⁸; 10. 10⁵ cm²; 11. (a) 36 m, (b) 144 m;
 11.3 cm; 13. x = 8 cm, y = 12.04 cm; 14. (a) 1.98×10³⁰ kg, (b) 7.2×10²² kg; 15. Yes, the glass sheet can go through the diagonal of the doorway. The diagonal of the doorway is 2.56 m long and it is greater than the length or the width of the glass sheet; 16. (a) 0, (b) 2; 17. No, only positive integers have 2 square roots (positive and negative: 2×2=4 and -2×-2=4 as well). Zero has only 1 square root because 0×0=0. Negative integers have no square root at all because the square root of a negative integer is undefined.

Page 5/5