PART A: Multiple Choice Questions
Circle the English letter of the best answer. Circle ONLY one answer for each question.

Knowledge:

1. Which of these relations is exponential?
 (a) \(y = 0.5x \)
 (b) \(y = 3x^2 \)
 (c) \(y = 2(x)^3 \)
 (d) \(y = 3^x \)

2. \(2^{-4} \) is:
 (a) \(-\frac{1}{8} \)
 (b) \(-2^4 \)
 (c) \(\frac{1}{16} \)
 (d) \(-16 \)

3. \(-3.5^0 \) is:
 (a) \(-3.5 \)
 (b) \(0 \)
 (c) \(1 \)
 (d) \(-1 \)

4. Evaluate \(2.58^{-1.4} \) to 2 decimal places, the answer is:
 (a) \(-3.61 \)
 (b) \(0.27 \)
 (c) \(-0.27 \)
 (d) \(3.61 \)

5. A certain type of bacteria doubles every hour. A culture begins with 30 000 bacteria, and have been undergone the doubling process for 8 hours. Which of the following formula best models the growth of the bacteria in the culture?
 (a) \(P = 30000(2)^x \)
 (b) \(P = 30000(2)^{8x} \)
 (c) \(P = 30000(8)^x \)
 (d) \(P = 30000(8)^2 \)

6. The population of fish in a lake grows according to the expression \(50(1.05)^t \), where \(t \) is the number of years. Find the number of fish after 8 years. Round to the nearest fish.
 (a) 420
 (b) 80
 (c) 74
 (d) 53

7. Write \(x^4 \times x^3 \) as a single power. Then, evaluate for \(x = -2 \).
 (a) 128
 (b) \(-128 \)
 (c) 16
 (d) \(-16 \)

8. The screen of a new graphing calculator has a resolution of 512 by 512 pixels. The number of pixels on the screen can be written as:
 (a) \((4^2)^5 \)
 (b) \((4^3)^4 \)
 (c) \((2^3)^6 \)
 (d) \((2^4)^4 \)

9. The deer population in a national park is declining every year. The population can be modelled using the formula \(P = 380(0.975)^n \), where \(P \) is the population after \(n \) years. What is the declining rate of the deer population as a percent?
 (a) 97.5\%
 (b) 38\%
 (c) 10\%
 (d) 2.5\%
Part B: Full Solution Questions
Show steps in proper form and provide answer statements get full mark.

Application:

1. A special type of light filter reduces the intensity of the light passing through it by 10%. Light intensity is further reduced as more light filters are placed together. Let I represent the light intensity and t represent the number of light filters. Write an equation that best models the situation. [A: 3]

2. A town’s racoon population is growing exponentially. The expected population can be estimated using the relation $P = 1250(1.013)^n$, where P is the population and n is the number of years.
 (a) What is the current racoon population? [A: 1]
 (b) What is the growth factor for the relation? [A: 1]
 (c) What is the yearly growth rate of the racoon population? Write as a percent. [A: 1]
 (d) What is the expected population in 5 years? [A: 2]
 (e) How long does it take the racoon population to be doubled? [A: 3]

Answers: 1. $I = (0.9)^t$; 2. (a) 1250, (b) 1.013, (c) 1.3%, (d) 1333, (e) 54 years;