Formula Sheet

Grade 9 Academic

Geometric Figure	Perimeter	Area
Rectangle l w	P = l + l + w + w or $P = 2(l + w)$	A = lw
Parallelogram h c	P = b + b + c + c or $P = 2(b + c)$	A = bh
Triangle a h c b	P = a + b + c	$A = \frac{bh}{2}$ or $A = \frac{1}{2}bh$
Trapezoid $ \begin{array}{c c} c & h & d \\ \hline b & b \end{array} $	P = a + b + c + d	$A = \frac{(a+b)h}{2}$ or $A = \frac{1}{2} (a+b)h$
Circle	$C=\pi d$ or $C=2\pi r$	$A = \pi r^2$

Geometric Figure	Surface Area	Volume
Cylinder h	$A_{ m base} = \pi r^2$ $A_{ m lateral\ surface} = 2\pi r h$ $A_{ m total} = 2A_{ m base} + A_{ m lateral\ surface}$	$V = (A_{\rm base})({\rm height})$
	$= 2\pi r^2 + 2\pi rh$	$V = \pi r^2 h$
Sphere	$A = 4\pi r^2$	$V = \frac{4}{3} \pi r^3 \qquad \text{or} \qquad V = \frac{4\pi r^3}{3}$
Cone	$A_{\mathrm{lateral\ surface}} = \pi r s$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$
	$A_{\mathrm{base}} = \pi r^{2}$ $A_{\mathrm{total}} = A_{\mathrm{lateral\ surface}} + A_{\mathrm{base}}$ $= \pi r s + \pi r^{2}$	$V = \frac{1}{3} \pi r^2 h \qquad \text{or} \qquad V = \frac{\pi r^2 h}{3}$
Square- based pyramid	$A_{ m triangle} = rac{1}{2}bs$ $A_{ m base} = b^2$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$
b	$A_{\text{total}} = 4A_{\text{triangle}} + A_{\text{base}}$ $= 2bs + b^2$	$V = \frac{1}{3} b^2 h \qquad \text{or} \qquad V = \frac{b^2 h}{3}$
Rectangular prism	A = 2(wh + lw + lh)	$V = (A_{\mathrm{base}})(\mathrm{height})$
l		V = lwh
Triangular prism a / c	$A_{\text{base}} = \frac{1}{2} bl$	$V = (A_{\rm base})({\rm height})$
h	$A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = A_{\text{rectangles}} + 2A_{\text{base}}$ = ah + bh + ch + bl	$V = \frac{1}{2}blh$ or $V = \frac{blh}{2}$