$\qquad$
Date: $\qquad$

## Worksheet 2-11: Squares and Square Roots

"Opposite" Math Operations: (So we can always work backward to check our answers!)

1. Addition and Subtraction are opposite math operations.
e.g., If $23+\mathbf{6}=29$,
(We add to find the answer.)
then ? $+6=29$

We do the opposite operation: $29-6=$ ?, so ? = 23 (We subtract to find the answer.)
2. Multiplication and Division are opposite math operations.
e.g., If $6 \times 7=42$,
(We multiply to find the answer.)
then $? \times 7=42$

We do the opposite operation: $42 \div 7=$ ?, so ? $=\mathbf{6}$ (We divide to find the answer.)
3. Squares and Square Roots are opposite math operations.
e.g., If $\quad 8^{2}=64, \quad \quad$ (We square to find the answer.)
then $?^{2}=64$

We do the opposite operation: $\sqrt{64}=$ ?, so $?=\mathbf{8} *$ (We take the square root of $\mathbf{6 4}$ to find the answer.)

The Square Root of a number means when the square root of a number " $x$ " is multiplied by itself, the result is the number $x$.

$$
\text { i.e., } \sqrt{x} \times \sqrt{x}=x
$$

Practice:

1. Find the square of the following.
(a) 5
(b) -15
(c) 0
(d) $\frac{2}{3}$
2. Find the square roots of the following.
(a) 36
(b) 289
(c) $\frac{1}{25}$
(d) $-81^{*}$
*6 is a square root of 36 because $6^{2}=36$. -6 is a square root of 36 as well because $(-6)^{2}=36$. However, $\mathbf{- 3 6}$ does not have a square root because no real number multiplied by itself results in a negative product.*

Name: $\qquad$
Date:
Perfect squares are numbers with square roots that are integers; 64 is a perfect square because its square root are 8 and -8 .
3. Circle all the perfect squares.
9
99
16
121
218
256
400

When the radical sign, $\sqrt{ }$, is used, it indicates only the positive square root. Otherwise, when asked to find the square roots of a positive integer, give both the positive and the negative square roots.
4. (a) Find $\sqrt{49}$.
(b) Find $-\sqrt{121}$.
(c) Find $\sqrt{5}$.
(d) Find $\sqrt{-100}$.
5. Simplify and evaluate. (Show steps.)
(a) $\sqrt{25}+\sqrt{4}$
(b) $\sqrt{49}-\sqrt{9}$
(c) $\sqrt{\sqrt{25}-\sqrt{16}}$
(d) $\sqrt{16} \div \sqrt{4}$
6. Calculate the length of the side and the perimeter of the square with an area of $\mathbf{2 0 0} \mathbf{~ c m}^{\mathbf{2}}$. Round to $\mathbf{2}$ decimal places where necessary.
7. A square parking lot has a side length of 5 m . Another square parking lot has four times the area of this parking lot. What is the side length of the bigger parking lot?

Answers: 1. (a) 25 , (b) 225 , (c) 0, (d) $\frac{4}{9}$; 2. (a) $\pm 6$, (b) $\pm 17$, (c) $\pm \frac{1}{5}$, (d) undefined (no square root); 4. (a) 7 , (b) -11 , (c) 2.24, (d) undefined; 5. (a) 7, (b) 4, (c) 1, (d) 2; 6. side-length $=14.14 \mathrm{~cm}$, perimeter $=56.56 \mathrm{~cm} ; 7.10 \mathrm{~m}$.

