Name: \qquad
Date: \qquad

Worksheet 2-2: Powers with Rational Base

Rational numbers

Rational numbers are numbers that can be written in fractional form
e.g., $\quad 2.3=\frac{23}{10}$
$4.67=\frac{467}{100}$
$0.78=\frac{78}{100}=\frac{39}{50}$

Powers with Rational Base

Powers with rational base are powers whose base is a rational number (a fraction or a decimal).
e.g.,
$2.3^{2} \quad$ Base $=2.3$

$$
\left(\frac{2}{7}\right)^{3} \quad \text { Base }=\frac{2}{7}
$$

Practice:

1. State the base, exponent and expanded form of the following powers.
(a) 3.9^{4}

Base =
Exponent =
Product $=$
(c) $(-2.8)^{3}$

Base $=$
Exponent =
Product $=$
(e) $-\left(\frac{2}{5}\right)^{4}$

Base $=$
Exponent =
Product =
(b) -4.5^{2}

Base $=$
Exponent =
Product $=$
(d) $\left(\frac{2}{3}\right)^{3}$

Base =
Exponent =
Product $=$
(f) $\left(-\frac{3}{4}\right)^{5}$

Base =
Exponent =
Product $=$

AChor/MPM1D

Name: \qquad
\qquad
2. Evaluate. (Use your calculator.)
(a) 2.9^{3} to the nearest tenth
(b) -7.4^{2} to the nearest hundredth
(c) 10.27^{4} to the nearest thousandth
(d) $(-4.9)^{6}$ to the nearest ten thousandth

Evaluating Power of a Fraction

$$
\begin{gathered}
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
\left(-\frac{a}{b}\right)^{n}=\frac{(-a)^{n}}{b^{n}} \text { or }=\frac{a^{n}}{(-b)^{n}}
\end{gathered}
$$

3. Simplify then evaluate. Write answer as a fraction.
(a) $\left(\frac{1}{2}\right)^{3}$
(b) $\left(\frac{2}{3}\right)^{4}$
(c) $\left(-\frac{3}{4}\right)^{2}$
(d) $\left(-\frac{1}{5}\right)^{3}$

Answers: 2. (a) 24.4, (b) -54.76 , (c) 11124.533 , (d) 13841.2872 ; 3. (a) $\frac{1}{8}$, (b) $\frac{16}{81}$, (c) $\frac{9}{16}$, (d) $-\frac{1}{125}$

