Worksheet 2-5: Negative Powers and Power of Powers

Part 1: Negative Power vs. Negative Base

Negative Powers are negative values. They are powers of positive base with a negative sign.

Examples:

(a)
$$-3^6$$

(b)
$$-5^5$$

(c)
$$-9^2$$

(d)
$$-4^3$$

$$Base =$$

However, powers with negative base do not always have negative values.

Examples:

(a)
$$(-3)^6$$

(b)
$$(-5)^5$$

$$(c) (-9)^2$$

$$(d) (-4)^3$$

$$Base =$$

$$Exponent = \\$$

Powers with negative base have positive values when they have \underline{even} exponents i.e. when the exponent is an even number.

Power Value

Investigation:

Power Value

Power	vaiue
$(-1)^4$	
$(-1)^3$	
$(-1)^2$	
$(-1)^{1}$	
$(-1)^0$	
$(-1)^{-1}$	
$(-1)^{-2}$	
$(-1)^{-3}$	
$(-1)^{-4}$	

TOWCI	v aruc
$(-2)^4$	
$(-2)^3$	
$(-2)^2$	
$(-2)^{1}$	
$(-2)^0$	
$(-2)^{-1}$	
$(-2)^{-2}$	
$(-2)^{-3}$	
$(-2)^{-4}$	

Power	Value
$(-5)^4$	
$(-5)^3$	
$(-5)^2$	
$(-5)^1$	
$(-5)^0$	
$(-5)^{-1}$	
$(-5)^{-2}$	
$(-5)^{-3}$	
$(-5)^{-4}$	

Part 2: Power of a Power

Exponent Law 3 - The Product of Exponent Rule For a Power of a Power

$$(a^m)^n = a^{m \times n}$$

 $(a^m)^n$ is called "a power of a power" because for exponent n, its base is a^m which is also a power.

To simplify a power of a power, keep the base the same and multiply the exponents.

Example 1:
$$(2^2)^3 = 2^2 \times 2^2 \times 2^2 = (2 \times 2) \times (2 \times 2) \times (2 \times 2) = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6$$

 $2^{2 \times 3} = 2^6$

Example 2:
$$(x^3)^5 = (x \cdot x \cdot x) \cdot (x \cdot x \cdot x) = x^{15}$$

$$x^{3 \times 5} = x^{15}$$

Example 3:
$$(x^2y^3)^2 = (x \cdot x \cdot y \cdot y \cdot y)(x \cdot x \cdot y \cdot y \cdot y) = (x \cdot x \cdot x \cdot x)(y \cdot y \cdot y \cdot y \cdot y \cdot y) = x^4y^6$$

 $x^{2\times 2}y^{3\times 2} = x^4y^6$

Practice:

1. Simplify. (i.e. write as a single power)

(a)
$$(3^2)^5$$

(b)
$$(4^5)^2$$

$$(c) (5^4)^3$$

(d)
$$(x^3)^6$$

(e)
$$((-2)^3)^3$$

(f)
$$(2^{-3})^{-2}$$

2. Express as a single power **then** evaluate.

(a)
$$(6^2)^2$$

(b)
$$((-7)^{-2})^{-1}$$

(c)
$$((3^2))^3 \times 3^2$$

(d)
$$((-2)^{-2})^{-3} \div (-2)^4$$

Answers: 1. (a)
$$3^{10}$$
, (b) 4^{10} , (c) 5^{12} , (d) x^{18} , (e) $(-2)^9$, (f) 2^6 ;

2. (a)
$$6^4$$
, 1296, (b) $(-7)^2$, 49, (c) 3^8 , 6561, (d) $(-2)^2$, 4.