A Chor	/MPM1D
ACHUL	/1411 141117

Name:			
Doto:			

Worksheet 2-10: Scientific Notation

How do you write a very large number or a very small number?

Writing ten thousand billion can take a long time to write.

Mathematicians come up with shortcut: Scientific Notation

To write a very "large size" number in scientific notation, we write the number as the "product" of

- (1) a <u>decimal number</u> greater than -10 and less than or equal to -1 (e.g., -1.00001, -1.0, -5.7, -9.9989) or
 - a <u>decimal number</u> greater than or equal to 1 and less than 10 (e.g., 1.00001, 1.0, 5.7, 9.9989)

and

(2) a power of 10 with a positive exponent (e.g., 10^2 , 10^7 , 10^{25} , 10^{100})

Practice:

- 1. Write the following numerals in scientific notation.
- (a) $120\ 000\ 000\ 000 = 1.2 \times 100\ 000\ 000\ 000 = 1.2 \times 10^{11}$
- (b) $1\,300\,000 =$
- (c) 4 500 000 000 =
- (d) 7800 =

To write a very "small size" number in scientific notation, we write the number as the "product" of

- (1) a <u>decimal number greater</u> than -10 and less than or equal to -1 (e.g., -1.00001, -1.0, -5.7, -9.9989) or
 - a <u>decimal number</u> greater than or equal to 1 and less than 10 (e.g., 1.00001, 1.0, 5.7, 9.9989)
- (2) a power of 10 with a negative exponent (e.g., 10^{-2} , 10^{-7} , 10^{-25} , 10^{-100})

Practice:

- 2. Write the following numerals in scientific notation.
- (a) $0.000\ 000\ 000\ 000\ 000\ 000\ 001\ 67 = 1.67 \times 0.000\ 000\ 000\ 000\ 000\ 000\ 001 = 1.67 \times 10^{-21}$
- (b) 0.00001 =
- (c) 0.000000005 =
- (d) 0.000000789 =

- 3. Write the following scientific notation as a numeral.
- (a) 2.3×10^6
- (b) 5.78×10^5
- (c) 2.3×10^{-6}
- (d) 5.78×10^{-5}

- 4. Write in scientific notation.
- (a) 18×10^2
- (b) 142×10^{-5}
- (c) 0.16×10^2
- (d) 0.236×10^{-6}

- 5. Simplify, to the nearest hundredth.
- (a) $3.6 \times 10^{23} \times 5.9 \times 10^6$

(b) $4.1 \times 10^{26} \times 3.2 \times 10^{9}$

(c) $\frac{1.146 \times 10^9}{5 \times 10^{-4}}$

(d) $\frac{1.98 \times 10^{30}}{2.7 \times 10^7}$

6. All matters is made up of atoms. Atoms are so small that 6.022×10^{23} gold atoms have a mass of approximately 200g. You could hold this many atoms of gold in the palm of your hand. The same number, in grains of sand, takes up the top 2 m of sand in the Sahara Desert. How many atoms of gold are in a 1-kg gold bar?

- **Answers: 1.** (b) 1.3×10^6 , (c) 4.5×10^9 , (d) 7.8×10^3 ; **2.** (b) 1.0×10^{-5} , (c) 5.0×10^{-9} , (d) 7.89×10^{-7} ;
 - **3.** (a) 2 300 000, (b) 578 000, (c) 0.0 000 023, (d) 0.0 000 578; **4.** (a) 1.8×10^3 , (b) 1.42×10^{-3} , (c) 1.6×10^1 , (d) 2.36×10^{-7} ; **5.** (a) 2.12×10^{30} , (b) 1.31×10^{36} , (c) 2.29×10^{12} , (d) 7.33×10^{22} ;
 - **6.** 3.011×10^{24}